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Abstract: During recent and ongoing pandemic circumstances, a lot of architectural spaces were 
adapted for use not designed for. Besides ergonomics and comfortable furniture, occupational 
health hazards include more indoor air pollution induced by functionally over-saturated 
architectural spaces. This paper discusses options and proposes an algorithm to improve air 
quality inside mixed-use micro apartment using low energy consumption embedded artificial 
intelligence (AI) systems to assist users in passive ventilation usage. Through data collected for 
observed case, algorithm is explained and tested both in terms of feasibility in low power 
embedding and energy efficiency annual savings by using assisted passive ventilation. Air 
pollution and progressively unsustainable old, built-in materials and infrastructural systems in 
existing buildings with limited to none energy upgrade options need solutions for maintaining 
comfortable and healthy indoor environmental conditions. Proposed low power embedded, 
ambient intelligence system provides solutions for such architectural spaces. Case study included 
a variety of parameters in a complex physical model, and through data feature engineering most 
influential parameters were chosen. Time series forecasting for predictive maintenance of air 
quality and built-in materials was tested through three different models: ARIMA, Facebook’s 
Prophet and Tensorflow recurrent neural network (RNN) with gated recurrent units (GRUs). 
Machine learning algorithm (TinyML) was deployed to Arduino Nano 33 BLE Sense 
microcontroller board in testing phase, to prove simplicity and feasibility of chosen AI neural 
network. Validation is provided through simulation on collected data, to show ventilation energy 
savings by using AI assisted passive ventilation. 
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1 Introduction 
 

Global SARS-CoV-2 pandemic influenced not only 
industries, companies, stock market and education, but also 
architectural spaces and our lifestyles (Horvat, Ávila, 2020). 
Government issued lockdowns forced a lot of people to 
work from home, and to adapt living and lounge areas to 
small home offices. Struggling to make spaces comfortable 
and flexible for mixed-use and efficient and productive 
working hours, people kept forgetting about health impacts 
this adaptation implied. 

Besides ergonomics and comfortable furniture, health 
impacts include more indoor air pollution induced by 
functionally over-saturated architectural spaces. This issue 

is underlined in small spaces inside old uninsulated 
buildings (Arnautović – Aksić, et al., 2016) where self 
sustainability is hard to achieve. 

This paper discusses options and proposes an algorithm 
to improve air quality inside mixed-use micro apartment 
using low energy consumption embedded artificial 
intelligence (AI) systems to assist users in passive 
ventilation usage. Case study is conducted for micro 
apartment located inside residential building originally built 
in 1970s for workers in small industrial town of Vogošća 
(near Sarajevo, Bosnia and Herzegovina). 

Original 35 m2 layout was designed to accommodate 
single user and was composed of living room and 
kitchen/dining room with one bathroom and small storage 
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space. This apartment, dated from Socialist Federal 
Republic of Yugoslavia period, was later adapted for young 
families, where kitchen is relocated to living room, and 
dining area is converted to bedroom. Small storage space 
was converted to walk-in closet that also includes dryer. 
Research is conducted within mixed-use 19 m2 living room 
area, now composed of small kitchenette, transformable 
table to accommodate dining area, and lounge space (figure 
1). During pandemic conditions, transformable dining table 
was also used for home office. 
 
Figure 1 The floor plan of observed space (author) 

 
 
Data was collected during months of winter 2020/2021 

season. Data logger (Avdić, 2020) was built upon Croduino 
Nova (ESP32) microcontroller with SGP30 air quality 
sensor, SHT20 temperature/relative humidity sensor and 
analog optical dust PM2.5 sensor programmed in 
Micropython (figure 2a). Sensor data was written in 15 
minute intervals on microSD card, including web data from 
local weather and air quality stations. In preprocessing 
phase, data was cleaned up and merged to hourly logs 
(figure 2b). 

 
Figure 2 a) left – data logger sensors and components, b) right – 
hourly log and column names (author) 

 

Since the apartment was used 24/7 for different activities 
that introduced more moisture, CO2 and airborne dust 
(particulate matter) into the air, indoor air quality self 
sustainability was at stake. To prevent pollution build up, 
and to enable enough fresh air for productive and healthy 
environment, ambient intelligence (AmI) assisted system 
(Haque, et al., 2020) for passive ventilation control was 
discussed, along with all limitations existing building 
already had (non-insulated building envelope, old built-in 
materials, and highly sealed upgraded windows). 

 
2 Data Analysis 

2.1 Infiltration 

To estimate infiltration energy losses and calculate 
approximate air change rate due to constant natural 
infiltration (through enclosure and around sealed windows) 
CO2 log was taken into consideration on logarithmic y-scale 
plotted against time intervals on x-axis to fit and calculate 
slope representing air change rate (Howard-Reed, et al., 
2002): 

 
ln #!(#)

!(%)
$ = −nt, (eq. 1) 

where C(0) is initial concentration, C(t) is concentration after time 
period t, and n is air change rate (h-1) 

 
Natural decay of excessive carbon dioxide (Ferdyn-

Grygierek, et al., 2019) and water vapour during night 
dormant hours, when heating system was off, was observed. 
For selected data frame, average of 0.08 h-1 air change rate 
was calculated, with usual 0.13 h-1 rate during colder nights 
(higher pressure difference). 

 
Figure 3 CO2 concentration log example plotted using Python's 
mathplotlib and natural concentration decay (red) used for air 
change rate calculation (author) 

 
 
As shown in figure 3, dormant hours time period, with 

low average air change rate due to highly sealed facade 
openings, is insufficient to provide enough fresh air with 
natural infiltration concentration decay, so stale and polluted 
air is building up as time progresses. This issue is accented 
during winter months when outdoor air pollution in 
Sarajevo area is usually high (IQAir, n.d.). 

 
2.2 Building Physics Audit 

Physical characteristics of observed architectural space 
were simulated using iSBEMba model (BRE Group, n.d.) 
using historically based assumptions for built-in materials 
and compared to thermal imaging audit results obtained in-
situ (figure 4a). Simulated annual energy consumption is 
compared to depleted energy through observed time period 
(figure 4b). 

 
 



10            Dženis Avdić 
 
Figure 4 a) top left – historically determined typical details 
(Arnautović – Aksić et al., 2016) were compared with thermal 
images (bottom left) to estimate enclosure U values, b) right – 
simulated results were compared to real data for validation 

 
 
This confirmed average U-value of 1.14 W/m2K for 

apartment enclosure (Arnautović – Aksić et al., 2016) in 
observed space, along with critical thermal bridges in facade 
walls for dew point calculation. Based on U-value and 
temperature difference we can determine interior surface 
temperature (Tw) for recognized critical points (Hadrović, 
2010): 
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  (eq. 2) 
 
2.3 CFD Passive Ventilation Potential 

Passive ventilation potential is analysed using ANSYS 
Fluent computational fluid dynamics (CFD) simulation 
software. To determine air change rate, simulation is 
conducted for usual passive ventilation setup through 
window opening and passive ventilation shaft (shown in 
figure 1). Since all openings in observed space are on east 
facing facade, east wind log profile was taken as a reference 
for modelling. East winds spectrum was also most common 
in Sarajevo area, which is confirmed with logged data, so 
the mean wind speed value was modelled into simulation. 

 
Figure 5 Estimating passive ventilation efficiency coefficient 
using ANSYS Fluent CFD simulation software (author) 

 
Simulation (figure 5) provided insight into actual flow 

efficiency coefficient for calculating air change rate based 
on east wind vector component perpendicular to facade 
opening (Swami, Chandra, 1987): 

 
𝐴𝐶𝐻 =	

𝑄
𝑉 	
[ℎ,/] 

where 𝑄 = 𝑐011 ∙ 𝐴2304546 ∙ 𝑣701 	;
8#

9 < (eq.3) 
and V[m3] is volume of air in a room 
 

Exchange air flow efficiency coefficient (ceff) was 
estimated to be around 0.1, which was coded into ACH 
calculation (eq. 3) for real-time variable velocity vector 
magnitudes. After that, required time duration for passive 
ventilation is estimated using eq. 1. During that time, 
mixing of cold outdoor and warm indoor air is occurring, so 
estimation for energy required to maintain interior ambient 
temperature could be calculated using Mollier diagram or 
approximated using heat loss calculation due to ventilation 
in one hour (The Open University, n.d.): 

 
 𝑄:; = 0.33 ∙ 𝑛 ∙ 𝑉 ∙ ∆𝑇	[𝑊] (eq.4) 
where 0.33 is energy required for heating up 1 m3 of air for 1 K 

 (eq. 4) 
For code implementation purpouses, eq. 4 is chosen over 

Mollier diagram calculation. 
 

2.4 Time Series Forecasting Algorithms 

Activities inside observed space introduce water vapour, 
CO2 and airborne dust (PM2.5), so correlation matrix for 
logged features was observed to confirm interdependence 
between these three parameters. As temperature/relative 
humidity sensor is most commonly available and affordable 
compared to CO2 and PM2.5 sensors, water vapour content 
of interior air was chosen for univariate machine learning 
models in time series forecasting. Since observed space was 
uninsulated and with old built-in materials, this feature was 
used to estimate vapour condensate and mold growth 
potential. Along with this phenomenon, airborne dust and 
spores released into the air were going to be prevented. The 
concept discussed and proposed is based on predictive 
maintenance for built-in materials with prolonged life span, 
but also implies indoor air quality and comfort 
improvement. 

Three different algorithms for time series data analysis 
and forecasting were compared and discussed. Statistical 
ARIMA (autoregressive integrated moving average) model 
was implemented and compared both to FFT (fast Fourier 
transform) decomposition based Facebook's Prophet 
predicting algorithm and RNN (recurrent neural network) 
machine learning model with GRUs (gated recurrent units) 
for univariate time series forecasting of absolute humidity of 
interior air. These three algorithms shown mean absolute 
error (MAPE) of 2.7%, 7.5% and 2.1% respectively (figure 
6), but for easier implementation onto microcontroller, RNN 
TinyML univariate model was chosen (Lazzeri, 2021). Even 
though ARIMA model was quite accurate (MAPE 1.8% for 
one step prediction), significant computational cost made it 
inoperable on microcontrollers. Besides that, argument 
contra ARIMA is also that it requires clean input data set 
and mostly manual preprocessing. Although Prophet was 
flexible and easy to implement, accuracy was an issue for 
chosen data features. Both accuracy and computational cost 
of RNN with GRUs made it feasible to implement onto 
microcontroller. 
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Figure 6 Forecasting accuracy comparison for three observed 
algorithms 

 
 
2.5 Proposed Low Power System 

For a proof of concept (POC), TinyML (machine learning 
for microcontrollers) model was deployed to Arduino Nano 
33 BLE Sense board with built-in sensors using Tensorflow 
based EloquentTinyML Arduino library to estimate ambient 
intelligence (AmI) system auxiliary energy consumption 
(figure 7). As an alternative, for more advanced system and 
proposed algorithm, Arduino Nano is exchanging data with 
logger shown in figure 2, so energy consumption of logger 
is to be taken into account as well. In terms of energy 
required for ventilation, auxiliary energy depleted by 
proposed Arduino microcontroller is shown to be neglected. 
 
Figure 7 Testing of deployed time series forecasting model on 
Arduino Nano 33 BLE Sense microcontroller (author) 

 
 
Proposed algorithm concept (figure 8) for microcontroller 
uses TinyML neural network to forecast absolute humidity 

(vapour content of interior air) for next hour log. Enclosure 
interior surface temperature (Tw) is than calculated using eq. 
2. For temperature Tw, relative humidity is calculated using 
forecasted value to determine if it's exceeding 75% dew 
point value (mold growth potential).  For values exceeding 
75%, UI (user interface) alert is raised and possibility of 
using passive ventilation (air quality index (AQI) outside is 
acceptable, and there's no percipitiation or high humidity) is 
checked. If passive ventilation is possible, required 
ventilation duration is calculated by solving eq. 1 for time t, 
and using ACH (n) from eq. 3 for current wind parameters 
(magnitude of wind vector component perpendicular to 
facade). For short required time (less than 15 minutes), 
algorithm assumes near zero energy required for ventilation 
due to accumulated heat in furniture and built-in materials. 
For longer air exchange it calculates heat loss energy using 
eq. 4. Finally, energy required both for active and passive 
systems is calculated to estimate energy savings. 
 
Figure 8 Proposed algorithm for microcontroller (TinyML on 
Arduino Nano 33 BLE Sense using data from logger shown in 
figure 2) (author) 

 
 

3 Conclusion 

Validation of proposed algorithm was calculated using 
data collected over 15 weeks of winter season inside 
observed space. Total energy saved by using AmI assisted 
passive ventilation calculated in algorithm simulation was 
estimated to be up to 18.7% of total energy required for 
ventilation. In some cases, for long lasting air exchange, 
passive ventilation was proven to be inefficient, because 
energy required for heating up cold air mixture was up to 20 
times higher than energy required for operating active 
ventilation system. But, for most existing old and 
uninsulated buildings, without energy upgrades both in 
enclosing structure and built-in infrastructure systems, just 
like in case observed, passive ventilation is the only way to 
keep interior space healthy and comfortable. Application of 
proposed low power embedded AI system is possible and 
feasible for historical buildings and buildings with limited 
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options for energy upgrades, as well as for limited upgrades 
in built-in materials and active ventilation systems. 

When space is not designed to accommodate multiple 
functions in mixed-use manner, it has to be controlled in 
some way. This also applies for conserved historical 
buildings with prolonged life cycle built-in materials. As 
architectural space is complex physical system for users to 
be able to predict and control certain parameters, artificial 
intelligence is to be integrated as helping hand for 
maintenance of comfortable and healthy environmental 
conditions. Every architectural space is unique physical 
system, so ambient intelligence (AmI system) is required to 
be proposed based on detailed analysis of multiple 
parameters in terms of building physics and fluid dynamics 
and carefully installed and maintained for different weather 
seasons. 

 
Acknowledgements 

I would like to express my gratitude and appreciation to 
late Professor Dženana Bijedić, who encouraged my PhD 
research when I struggled the most. Her work on holism and 
holistic approach in architectural studies contributed to 
methodology used in this research paper. Her distinguished 
legacy will continue to inspire future generations of 
students, scholars, and educators alike. 

 
References 

 [1] S. Horvat, R. Ávila, Everything Must Change!: The World 
after Covid-19, OR Books, New York, 2020. 

[2] D. Arnautović - Aksić, et al., Typology of Residential Buildings 
in Bosnia and Herzegovina, Faculty of Architecture, 
University of Sarajevo, Sarajevo, 2016. 

[3] Dž. Avdić, Air Quality and Meteorology Data Logger, 
https://github.com/DzenisAvdic/Air-Quality-and-
Meteorology-Data-Logger, 2020. (01.07.2021). 

[4] A. Haque, A. Miltein & L. Fei-Fei, Illuminating the dark 
spaces of healthcare with ambient intelligence, Nature, volume 
585, pg. 193 – 202, 2020. 

[5] L.A. Wallace, S.J. Emmerich & C. Howard-Reed, Continuous 
measurements of air change rates in an occupied house for 1 
year: The effect of temperature, wind, fans, and windows, 
Journal of Exposure Analysis and Environmental 
Epidemiology, 12, pg. 296 – 306 2002. 

[6] J. Ferdyn-Grygierek, et al., Thermal Diagnostics of Natural 
Ventilation in Buildings: An Integrated Approach, Energies 
2019, 12, 4556, 2019. 

[7] IQAir, Air Quality in Sarajevo, 
https://www.iqair.com/us/bosnia-herzegovina/federation-of-b-
h/sarajevo, n.d. (01.07.2021). 

[8] BRE Group, SBEM: Simplified Building Energy Model, 
https://www.bre.co.uk/page.jsp?id=706, n.d. (01.07.2021). 

[9] A. Hadrović, Architectural Physics, Faculty of Architecture, 
Sarajevo, 2010. 

[10] M.V. Swami & S. Chandra, Procedures for Calculating 
Natural Ventilation Airflow Rates in Buildings, ASHRAE 
Research Project 448-RP, Florida Solar Energy Center, Florida, 
1987. 

[11] The Open University, Cutting ventilation losses, 
https://www.open.edu/openlearn/nature-environment/energy-
buildings/content-section-2.3 (02.07.2021). 

[12] F. Lazzeri, Machine Learning for Time Series Forecasting 
with Python, John Wiley & Sons, Indiana, 2021. 

Biographical notes: 
Dženis Avdić is born in 1989 in Sarajevo. 
He earned his Master of Architecture 
degree in 2013 from Faculty of 
Architecture, University of Sarajevo. He's 
currently employed as Senior Assistant at 
Architectural Structures and Building 
Technology Department of Faculty of 
Architecture in Sarajevo and continues his 

education towards PhD degree. His research involves energy 
efficiency of historical buildings through implementation of smart 
solutions in existing structures. Recent bibliography includes 
studies on Austro-Hungarian heritage buildings in Bosnia and 
Herzegovina. Heritage historical buildings are also main theme of 
his artworks.  
 
 
 


